

Towards sustainable growth

Ramky Enviro Engineers Limited

Moving Towards Sustainable Waste Management

www.ramkyenviroengineers.com

Lack of value

Industrial Waste - Hazardous

corrosive, reactive, ignitable, toxic

Municipal Waste - Putrescible, odorous, nuisance

Bio-degradable, non-biodegradable

Waste Management - Sustainable Approach

Socially Acceptable

 Environmentally effective and safe

Best Practices

Waste Management

- Control Depletion of Land Consumption
- Control consumption of fossil fuels
- Control Depletion of Natural Resources
- Recovery of Energy and Resource

- Burning of waste
- Disposal in a dump site (unlined)
- Disposal in landfill
- Production of compost and disposal of rejects in to landfill
- Production of Refuse Derived Fuel
- Waste to Energy

Refuse Derived Fuel (RDF)

Refuse Derived Fuel (RDF) can be defined as combustible fraction of Municipal Solid Waste (MSW) which has been segregated, processed, shredded and densified suitably to meet the alternate fuel requirements in the industry such that it has an optimum calorific value and consistency in quality.

RDF (FLUFF FORM)

Fuel Characteristics in India

Sr. No.	Description	Characteristic
1.	Form	Fluff Form
2.	Size	75 mm edge to edge
3.	Bulk Density	350 to 450 Kg/cu.m
4.	Moisture Content	20 to 25%
5.	Ash Content	20 %
6.	Calorific Value	2500 - 3000Kcal/Kg

PROCESS FLOW

8

RDF Shredder machine

Shredder with power and trammel connections

9

www.ramkyenviroengineers.com

Screened material conveyor for air blowing

RDF Screening trammel

10

www.ramkyenviroengineers.com

RDF PELLETS

RDF BRIQUETTES

RDF BALES

1

Types of RDF:

RDF (FLUFF FORM)

Types of RDF

Class	From	Description	Remarks
RDF-1	Raw	Municipal solid waste as a fuel in an	This is the fuel intended waste to energy
	(MSW)	as discarded form without oversize	and predominantly the dry waste from
		bulky waste	commercial establishments and education
			institutions. Such waste can also be used
			directly in cement kilns
	Coarse	MSW processed to coarse particle	This is a simple screening – sort of pre
RDF-2	(c-RDF)	size with or without ferrous-metal	segregation to remove the compostable
		separation, such that 95% by weight	waste and resultant waste is dry with
		passes through a 6-in-square mesh	enriched Heat value having potential to be
		screen	used in waste to energy and cement kilns
RDF-3	Fluff	Shredded fuel derived from MSW	This is further increase the heat value of
	(f-RDF)	processed for the removal of metal,	the RDF to specific needs of RDF Users like
		glass, and other entrained inorganic;	cement plants who require such high heat
		particle size of this material is such	value fuel to reduce their fossil fuel
		that 95% by weight passes through	consumption and primarily the market is
		a 2-in-square mesh screen; also	determined by demand.
		called "fluff RDF"	12

Types of RDF

Class	From	Description	Remarks
RDF-4	Powder	Combustible waste fraction	This is the originally intended RDF
	(p-RDF)	processed into powdered	Fluff prior to the making of the
		from,95% by weight passing	Briquettes and pellets. However ,
		through a 10-mesh screen (0.035-	this is very expensive and not
		in.square)	scalable beyond 10 TPD with high
			O&M costs with little global
			precedence.
RDF-5	Densified	Combustible waste fraction	Not commercially scaled up
	(d-RDF)	densified (compressed) into	
		pellets, slugs, cubettes,	
		briquettes, or similar forms	
RDF-6	Liquid	Combustible waste fraction	R&D set up only at present
		processed into a liquid fuel	
RDF-7	Gas	Combustible waste fraction	Do
		processed into a liquid fuel	

MSW / RDF Indian Scenario

Parameter	MSW	RDF
Calorific Value	800 to 1000Kcal/Kg	3100Kcal/Kg
Moisture Content	50%	<15%
Inerts	37 %	<2%

MUNICIPAL SOLID WASTE

REFUSE DERIVED FUEL (FLUFF FORM)

www.ramkyenviroengineers.com

Market Opportunities / Demand

15

Cement Industries
 Thermal Power Plants
 Boilers (Conventional Boilers)

16

- Bharathi Cement Corporation Pvt Ltd
- Ambuja Cement Ltd (Maharastra)
- Ambuja Cement Ltd (Chattisgarh)
- Wadi Cement Works
- Shalivahana Green Energy Ltd
- Vasavadatta Cements
- Zuari Cements Ltd
- Others

Way Forward

- Separating and Densifying >100 mm fractions of MSW and making it as RDF
- Identifying Thermal Power plants, Cement Plants, Boilers locally nearby to encourage utilization of waste for recovery of energy / resource
- Educating and encouraging industries to use RDF as a co-firing fuel along with conventional fossil fuels duly equipping with pollution control systems

Haz Waste Management At TSDF- Process Flow

www.ramkyenviroengineers.com

18

AFR - Approach

Utilization of waste as

- > Alternate Fuel
- Raw Material

✤ As Fuel :

- > High calorific value (heat value)
- Recovery of Energy

As Raw Material :

- > waste rich in Ca, Fe, Al etc., directly used as RM
- Resource conservation

A. Hazardous Wastes

1. Paint Sludge from automobile sector

- 2. Petroleum Refining sludge
- 3. TDI tar waste

✤ 4. ETP sludge from M/s BASF India Ltd.

B. Other Wastes
1. Plastic Wastes
2. Tyre chips

Specification of HW for use of energy recovery

owards sustainable growth	Parameter	Limit	
Calorific	Value As received basis	>2500 k Cal/Kg	
	Ash		
	-Liquid	< 5%	
	-Solid	< 20%	
	Chloride	< 1.5 %	
н	alogens (F+Br+I)	< 1.0 %	
	Sulphur	< 1.5 %	
	PCB/PCT (ppm)	< 50	
Не	avy Metals (ppm)		
	Hg	< 10	
	Cd+Tl+Hg	< 100	
As+Co+Ni	+Se+Te+Sb+Cr+Sn+Pb+V	< 25,00	
	рН	4 to 12	
Visco	osity (cSt) for Liquid	< 100	
Flash point (Deg Centigrade) (for Liquid)	> 60	21

Specification of HW for use as Alternative Raw Material

Parameter	Limit
Volatile organic Hydrocarbon	< 5000 ppm
Total organic Carbon (TOC)	< 1000 ppm
CaO + SiO2 + A1203 + Fe203 + SO3	> 80 %
(In Ash)	
Chloride	< 1.5 %
Sulphur	< 1.5 %
PCB/PCT (ppm)	< 5.0
Heavy Metals (ppm)	
Hg	< 10
Cd+Tl+Hg	< 100
As+Co+Ni+Se+Te+Sb+Cr+Sn+Pb+V	< 10,000

•Despite co-processing having inherent advantages, a careful approach is called for in view of hazardous nature of substances being handled.

- Many of which has potential to create havoc in terms of transportation, handling, storage and processing itself.
- Further the mechanism to be followed for coprocessing hazardous wastes, has to confirm to the Rules and Regulations as per Hazardous Waste Rules.

Wastes not recommended for co-processing

Biomedical waste , Asbestos containing waste, Electronic scrap, Entire batteries,

Explosives, Corrosives, Mineral acid wastes, Radioactive Wastes, and Unsorted

municipal garbage.

- Not the core business
- Percentage of quantum are in traces
- Additional investments for pre-treatment and homogenization
- Pre-treatment costs
- Additional man-power
- Short term attraction

Can not serve the customer for all kinds of incinerable wastes they generate Quantities are not guaranteed Wastes are heterogeneous Issues with > Product quality \succ emissions ✓ Ambient ✓ Fugitive ✓ Stack

26

Advantages passing waste through TSDFs

There is no additional investment

- Wastes come to the cement plants as per the required quantities and required characteristics in a homogenized manner.
- No head-ache of hazardous waste transportation which it self is a specialized task which is certainly not the domine activity of cement plants
- Monitoring of regulatory agencies is easy wrt. Transport of waste through TSDF rather than transport directly by industries to n-number of cement plants.

Towards sustainable growth...

Towards sustainable growth

THANK YOU